Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
mSystems ; 9(3): e0094523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376263

ABSTRACT

Bacterial plasmids play a major role in the spread of antibiotic resistance genes. However, their characterization via DNA sequencing suffers from the low abundance of plasmid DNA in those samples. Although sample preparation methods can enrich the proportion of plasmid DNA before sequencing, these methods are expensive and laborious, and they might introduce a bias by enriching only for specific plasmid DNA sequences. Nanopore adaptive sampling could overcome these issues by rejecting uninteresting DNA molecules during the sequencing process. In this study, we assess the application of adaptive sampling for the enrichment of low-abundant plasmids in known bacterial isolates using two different adaptive sampling tools. We show that a significant enrichment can be achieved even on expired flow cells. By applying adaptive sampling, we also improve the quality of de novo plasmid assemblies and reduce the sequencing time. However, our experiments also highlight issues with adaptive sampling if target and non-target sequences span similar regions. IMPORTANCE: Antimicrobial resistance causes millions of deaths every year. Mobile genetic elements like bacterial plasmids are key drivers for the dissemination of antimicrobial resistance genes. This makes the characterization of plasmids via DNA sequencing an important tool for clinical microbiologists. Since plasmids are often underrepresented in bacterial samples, plasmid sequencing can be challenging and laborious. To accelerate the sequencing process, we evaluate nanopore adaptive sampling as an in silico method for the enrichment of low-abundant plasmids. Our results show the potential of this cost-efficient method for future plasmid research but also indicate issues that arise from using reference sequences.


Subject(s)
Anti-Infective Agents , Nanopores , Plasmids/genetics , Bacteria/genetics , DNA
2.
BMC Genomics ; 25(1): 156, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331708

ABSTRACT

BACKGROUND: Campylobacter spp. is the most frequent cause of bacterial food-borne gastroenteritis and a high priority antibiotic resistant bacterium according to the World Health Organization (WHO). European monitoring of thermotolerant Campylobacter spp. does not reflect the global burden of resistances already circulating within the bacterial population worldwide. METHODS: We systematically compared whole genome sequencing with comprehensive phenotypic antimicrobial susceptibility, analyzing 494 thermotolerant Campylobacter poultry isolates from Vietnam and Germany. Any discrepancy was checked by repeating the wet lab and improving the dry lab part. Selected isolates were additionally analyzed via long-read Oxford Nanopore technology, leading to closed chromosomes and plasmids. RESULTS: Overall, 22 different resistance genes and gene variants (e. g. erm(B), aph(3')-IIIa, aph(2'')-If, catA, lnu(C), blaOXA, sat4) and point mutations in three distinct genes (gyrA, 23S rRNA, rpsL) associated with AMR were present in the Campylobacter isolates. Two AMR genes were missing in the database and one falsely associated with resistance. Bioinformatic analysis based on short-read data partly failed to identify tet(O) and aadE, when the genes were present as duplicate or homologous gene variants. Intriguingly, isolates also contained different determinants, redundantly conferring resistance to chloramphenicol, gentamicin, kanamycin, lincomycin and streptomycin. We found a novel tet(W) in tetracycline sensitive strains, harboring point mutations. Furthermore, analysis based on assemblies from short-read data was impaired to identify full length phase variable aad9, due to variations of the poly-C tract within the gene. The genetic determinant responsible for gentamicin resistance of one isolate from Germany could not be identified. GyrT86I, presenting the main determinant for (fluoro-)quinolone resistance led to a rare atypical phenotype of ciprofloxacin resistance but nalidixic acid sensitivity. Long-read sequencing predicted AMR genes were mainly located on the chromosome, and rarely on plasmids. Predictions from long- and short-read sequencing, respectively, often differed. AMR genes were often organized in multidrug resistance islands (MDRI) and partially located in proximity to transposase genes, suggesting main mobilization of resistance determinants is via natural transformation and transposition in Campylobacter. CONCLUSIONS: The results of this study suggest that there is frequent resistance gene duplication, mosaicism, and mutation leading to gene variation and truncation in Campylobacter strains that have not been reported in previous studies and are missing from databases. Furthermore, there is a need for deciphering yet unknown resistance mechanisms and resistance spread in thermotolerant Campylobacter spp. that may pose a challenge to global food safety.


Subject(s)
Campylobacter Infections , Campylobacter , Humans , Campylobacter Infections/microbiology , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Campylobacter/genetics , Gentamicins , Whole Genome Sequencing , Microbial Sensitivity Tests
3.
Front Microbiol ; 14: 1253362, 2023.
Article in English | MEDLINE | ID: mdl-38094626

ABSTRACT

For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics.

4.
Microorganisms ; 11(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138071

ABSTRACT

Campylobacter jejuni and Campylobacter coli are the predominant thermophilic species responsible for foodborne gastroenteritis worldwide. Elevated resistance to certain antibiotics was observed due to antimicrobial therapy in farm animals and humans, while reduced antimicrobial usage partially reduced antibiotic resistance. Monitoring the antimicrobial resistance demonstrated a substantial fraction of multi-resistant isolates, indicating the necessity of reliable tools for their detection. In this study, resistance determinants in 129 German and 21 Vietnamese isolates were selected to establish a novel multiplex real-time PCR (qPCR), facilitating the simultaneous detection of four resistance determinants. These comprised tet(O) gene variants associated with tetracycline resistance, point mutations GyrA_T86I and GyrA_T86V associated with ciprofloxacin resistance, and the erm(B) gene together with the point mutation A2075G in the 23S rRNA gene, associated with erythromycin resistance. Moreover, the performance of the qPCR assay was evaluated by comparing the results of qPCR to phenotypic antimicrobial resistance profiles, obtained with standardized EUCAMP3 microdilution panel, which showed 100% similarity (inclusivity and exclusivity). Variation in measurement methods, including qPCR machines and master mixes showed robustness, essential for laboratories. The assay can be used for the rapid detection of resistance determinants, and is beneficial for monitoring the spread of antibiotic resistance in C. jejuni and C. coli.

5.
Microorganisms ; 11(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37894150

ABSTRACT

Campylobacteriosis cases in humans are of global concern, with high prevalence rates in the poultry reservoir considered the most important source of infection. Research findings show Campylobacters' ability to enter a viable but non-culturable (VBNC) state, remaining "viable" but unable to grow on culture media. We explored the persistence of VBNC states in specific environments, particularly at broiler farms, as this state may lead to an underestimation of the present Campylobacter prevalence. For VBNC detection, a propidium monoazide PMA-dye viability qPCR (v-qPCR) was used in combination with cultivation methods. We examined samples collected from broiler farm barns and their surroundings, as well as chicken manure from experimental pens. In addition, the tenacity of culturable and VBNC-Campylobacter was studied in vitro in soil and water. In a total of three visits, Campylobacter was not detected either culturally or by v-qPCR (no Campylobacter DNA) in the environment of the broiler farms. In four visits, however, VBNC-Campylobacter were detected both inside and outside the barns. The overall prevalence in environmental samples was 15.9% for VBNC-Campylobacter, 62.2% for Campylobacter DNA, and 1.2% for culturable C. jejuni. In the experimental pens, no cultivable C. jejuni was detected in chicken manure after 24 h. Strikingly, "VBNC-Campylobacter" persisted even after 72 h. "VBNC-Campylobacter" were confirmed in barn surroundings and naturally contaminated chicken manure. Laboratory studies revealed that VBNC-Campylobacter can remain intact in soil for up to 28 days and in water for at least 63 days, depending on environmental conditions.

6.
Nat Commun ; 14(1): 6715, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872172

ABSTRACT

The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Regulon/genetics , Reactive Oxygen Species/metabolism , Proteomics , Multiomics , Oxidation-Reduction , DNA/metabolism , Bacterial Proteins/metabolism , Helicobacter Infections/genetics
8.
Foods ; 12(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107434

ABSTRACT

Campylobacteriosis outbreaks have repeatedly been associated with the consumption of raw milk. This study aimed to explore the variation in the prevalence and concentration of Campylobacter spp. in cows' milk and feces, the farm environment and on the teat skin over an entire year at a small German dairy farm. Bi-weekly samples were collected from the environment (boot socks), teats, raw milk, milk filters, milking clusters and feces collected from the recta of dairy cows. Samples were analyzed for Campylobacter spp., E. coli, the total aerobic plate count and for Pseudomonas spp. The prevalence of Campylobacter spp. was found to be the highest in feces (77.1%), completely absent in milking equipment and low in raw milk (0.4%). The mean concentration of Campylobacter spp. was 2.43 log10 colony-forming units (CFU)/g in feces and 1.26 log10 CFU/teat swab. Only a single milk filter at the end of the milk pipeline and one individual cow's raw milk sample were positive on the same day, with a concentration of 2.74 log10 CFU/filter and 2.37 log10 CFU/mL for the raw milk. On the same day, nine teat swab samples tested positive for Campylobacter spp. This study highlights the persistence of Campylobacter spp. for at least one year in the intestine of individual cows and within the general farm environment and demonstrates that fecal cross-contamination of the teats can occur even when the contamination of raw milk is a rare event.

9.
Biomolecules ; 13(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36979449

ABSTRACT

C. jejuni is an important food-borne pathogen displaying high genetic diversity, substantially based on natural transformation. The mechanism of DNA uptake from the environment depends on a type II secretion/type IV pilus system, whose components are partially known. Here, we quantified DNA uptake in C. jejuni at the single cell level and observed median transport capacities of approximately 30 kb per uptake location. The process appeared to be limited by the initialization of DNA uptake, was finite, and, finalized within 30 min of contact to DNA. Mutants lacking either the outer membrane pore PilQ or the inner membrane channel ComEC were deficient in natural transformation. The periplasmic DNA binding protein ComE was negligible for DNA uptake, which is in contrast to its proposed function. Intriguingly, a mutant lacking the unique periplasmic protein Cj0683 displayed rare but fully functional DNA uptake events. We conclude that Cj0683 was essential for the efficient initialization of DNA uptake, consistent with the putative function as a competence pilus protein. Unravelling features important in natural transformation might lead to target identification, reducing the adaptive potential of pathogens.


Subject(s)
Campylobacter jejuni , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Transformation, Bacterial , DNA/metabolism , DNA-Binding Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
10.
Int J Food Microbiol ; 388: 110064, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36610236

ABSTRACT

This article describes the outline and organisation of the validation of three multiplex PCR methods for species identification and/or confirmation of thermotolerant Campylobacter spp. The three PCR methods were validated against the reference method described in the EN ISO standard 10272:2017. The results of the PCR methods were compared against the reference method in a method comparison study and an interlaboratory study based on EN ISO 16140-6:2019. The performance, in terms of inclusivity and exclusivity, of each of the eight PCR targets were comparable to the performance of the reference method: close, equal, or better depending on the target. In total, all three PCR methods were concluded to be equally qualified as the reference method for molecular identification and/or confirmation of thermotolerant Campylobacter spp., C. jejuni, C. coli and C. lari isolated from the food chain and have been included in Amendment 1 of ISO 10272:2017.


Subject(s)
Campylobacter jejuni , Campylobacter , Campylobacter/genetics , Food Chain , Food Microbiology , Multiplex Polymerase Chain Reaction , Campylobacter jejuni/genetics
11.
Antibiotics (Basel) ; 11(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36290077

ABSTRACT

Antimicrobial resistance remains a public health concern globally. This study presents antimicrobial resistance by microdilution and genetic diversity by the whole-genome sequencing of Campylobacter spp. from human and poultry samples isolated in Georgia in 2020/2021. The major species in poultry samples was C. coli, while C. jejuni was preferentially isolated from human samples. Resistance against tetracycline was highest (100%) in C. coli from industrial chicken and lowest in C. jejuni from clinical isolates (36%), while resistance against ciprofloxacin varied from 80% in C. jejuni from backyard chicken to 100% in C. jejuni and C. coli from industrial chicken. The point mutations in gyrA (T86I) and tet (O) genes were detected as resistance determinants for (fluoro-)quinolone or tetracycline resistance, respectively. Ertapenem resistance is still enigmatic. All isolates displayed sensitivity towards erythromycin, gentamicin and chloramphenicol. Multi-resistance was more frequently observed in C. coli than in C. jejuni, irrespective of the isolation matrix, and in chicken isolates compared to human isolates, independent of the Campylobacter species. The Georgian strains showed high variability of multi-locus sequence types (ST), including novel STs. This study provides the first antibiotic resistance data from Campylobacter spp. in Georgia and addresses the need for follow-up monitoring programs.

12.
Pathogens ; 11(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745559

ABSTRACT

Thermotolerant Campylobacter spp. are fecal contaminants of chicken meat with serious implications for human health. E. coli is considered as hygiene indicator since, in contrast to Campylobacter. spp., the bacterium is generally present in the avian gut. Stress exposure may transiently cease bacterial division. Therefore, colony forming units (CFU) may underestimate the infection risk of pathogens. We developed a viability real-time PCR (v-qPCR) for the quantification of viable E. coli targeting the uidA gene, encoding ß-glucuronidase, which is usually detected for phenotypic species identification. The short- and long-term effects of decontaminating chicken skin on the survival of both C. jejuni and an ESBL-producing E. coli were evaluated by CFU and v-qPCR. The results showed that freezing and storage in cool conditions are potentially underestimated by CFU but not by v-qPCR. The effect of treatment with peroxyacetic acid on survival was consistently detected by CFU and v-qPCR. v-qPCR analysis detected bacterial survival upon the application of lactic acid, which awaits further analysis. Interestingly, both bacteria showed similar kinetics of inactivation upon the application of reduction strategies, suggesting that E. coli might be a complementary hygiene indicator. We conclude that v-qPCR can improve food safety under the consideration of some limitations.

13.
Pathogens ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35215176

ABSTRACT

This is the first study on campylobacteriosis carried out in Georgia. It targeted 382 hospitalized children with acute inflammatory diarrhea. The study was conducted between July 2020 to July 2021 based on the main infection clinic of the capital city. Culture-based bacteriological methods were followed by phenotypic and Real-time PCR tests for bacterial confirmation and identification. The data revealed recent epidemiologic prevalences of the three main causative bacteria in the target population. Shigella sonnei with 19.1% (95% CI: 15.2-23.4%) was the most frequently detected pathogen followed by Campylobacter spp. with 12.3% (95% CI: 9.2-16.0%) and Salmonella spp. with 4.9% (95% CI: 3.0-7.6%). However, in 63.6% of the samples, the causative agent remained unknown. Species differentiation of Campylobacter spp. revealed 81% Campylobacter jejuni and 19% Campylobacter coli. An epidemiological pyramid with estimated magnification factors may give more insights into the burden of campylobacteriosis among the studied population, resulting in a putative annual incidence of 6 per 1000 children in Tbilisi. Children with campylobacteriosis were younger (median age 40 months (interquartile range (IQR) 22-95)) than with shigellosis (median age 92 months (interquartile range (IQR) 52-140)). However, no statistically significant difference was found with the age range of patients with campylobacteriosis and salmonellosis as well as with salmonellosis and shigellosis. In conclusion, Campylobacter spp. may be suspected to be the second most frequent bacterial causative agent of acute inflammatory diarrhea in hospitalized children and the primary cause in the 0-3 age group in Georgia. In addition, Campylobacter CROMagar showed better selectivity in comparison to mCCDA selective agar of stool samples in our study.

14.
Sci Total Environ ; 824: 153928, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35182630

ABSTRACT

AIMS: The increasing number of globally established fosfomycin-resistant (FosR) Gram-negative bacteria inspired us to investigate the occurrence of FosREnterobacterales populations (esp. E. coli) in samples of city wastewater treatment plants (WWTPs) and hospital sewage in Hatay, Turkey. FosR target bacteria were further characterized for their clonal relatedness, resistomes and mobile genetic elements (MGEs) to evaluate their impact on fosfomycin resistance dissemination. METHODS: A total of 44 samples from raw and treated waters of WWTPs as well as of two hospitals in the Hatay province were subjected to selective cultivation for recovering FosREnterobacterales. The presence of fosA was verified by PCR and Sanger amplicon sequencing. Detected E. coli were further evaluated against antimicrobial susceptibility-testing, macrorestriction profiling (PFGE) and whole-genome sequencing (WGS). Bioinformatics analysis was performed for genome subtyping (i.e., MLST, serotype), resistome/virulome determination and dissection of the genetic determinants of plasmidic fosA3/4 resistances. RESULTS: Besides ten non-E. coli Enterobacterales, 29 E. coli were collected within this study. In silico-based subtyping revealed that E. coli isolates were assigned to six different serovars and 14 sequence types (ST), while O8:H21 and ST410 represented the major prevalent types, respectively. Fosfomycin resistance in the isolates was found to be mediated by the fosA4 (n = 18), fosA3 (n = 10) and fosA (n = 1), which are frequently associated with transmissible MGEs. Reconstruction of plasmid-associated fosA gene context revealed a linkage between the resistance cassette and IS6 (IS26 family) transposases, which might represent a major driver for the distribution of the genes and the generation of novel fosA-carrying plasmids. CONCLUSIONS: The occurrence of plasmid-mediated, transmissible FosR in E. coli from wastewater pose a foreseeable threat to "One-Health". To minimize further spread of the resistances in bacterial populations associated with environmental, animal and human health further resistance monitoring and management strategies must be developed.


Subject(s)
Escherichia coli Infections , Fosfomycin , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/epidemiology , Hospitals , Interspersed Repetitive Sequences , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , Turkey , Wastewater , beta-Lactamases/genetics
15.
Int J Food Microbiol ; 359: 109417, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34624596

ABSTRACT

Campylobacter jejuni is the leading bacterial food-borne pathogen in Europe. Despite the accepted limits of cultural detection of the fastidious bacterium, the "gold standard" in food microbiology is still the determination of colony-forming units (CFU). As an alternative, a live/dead differentiating qPCR has been established, using propidium monoazide (PMA) as DNA-intercalating crosslink agent for inactivating DNA from dead, membrane-compromised cells. The PMA treatment was combined with the addition of an internal sample process control (ISPC), i.e. a known number of dead C. sputorum cells to the samples. The ISPC enables i), monitoring the effective reduction of dead cell signal by the light-activated DNA-intercalating dye PMA, and ii), compensation for potential DNA losses during processing. Here, we optimized the method for routine application and performed a full validation of the method according to ISO 16140-2:2016(E) for the quantification of live thermophilic Campylobacter spp. in meat rinses against the classical enumeration method ISO 10272-2:2017. In order to render the method applicable and cost-effective for practical application, the ISPC was lyophilized to be distributable to routine laboratories. In addition, a triplex qPCR was established to simultaneously quantify thermophilic Campylobacter, the ISPC and an internal amplification control (IAC). Its performance was statistically similar to the two duplex qPCRs up to a contamination level of 4.7 log10Campylobacter per ml of meat rinse. The limit of quantification (LOQ) of the alternative method was around 20 genomic equivalents per PCR reaction, i.e. 2.3 log10 live Campylobacter per ml of sample. The alternative method passed a relative trueness study, confirming the robustness against different meat rinses, and displayed sufficient accuracy within the limits set in ISO 16140-2:2016(E). Finally, the method was validated in an interlaboratory ring trial, confirming that the alternative method was fit for purpose with a tendency of improved repeatability and reproducibility compared to the reference method for CFU determination. Campylobacter served as a model organism, challenging CFU as "gold standard" and could help in guidance to the general acceptance of live/dead differentiating qPCR methods for the detection of food-borne pathogens.


Subject(s)
Campylobacter , Meat , Azides , Campylobacter/genetics , DNA, Bacterial , Food Microbiology , Propidium , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Stem Cells
16.
Front Microbiol ; 12: 712106, 2021.
Article in English | MEDLINE | ID: mdl-34489902

ABSTRACT

Turkey is an important stopover site for many migrating birds between Europe, Asia and Africa. Campylobacter spp. are frequently found in wildlife, in particular waterfowl, and distinct strains are disseminated within this reservoir. In this study, 183 wild birds of hunting areas in Turkey were collected and thermophilic Campylobacter spp. from cloacal swabs were isolated at a prevalence of 5.2% from song thrushes (6/116) and 93% from Eurasian coots (41/44). After PCR species differentiation and flaA restriction profiles determination, C. jejuni and C. coli strains were further investigated by whole genome sequencing. PCR target amplification of the ceuE gene, commonly used for C. coli species-identification was inefficient and even hampered in one isolate. A close look on the ceuE sequence revealed that various mismatches in the ceuE oligo annealing sites caused less efficient diagnostic detection. All C. coli isolates belonged to the environmental clade II and clade III, for which thirty-six novel MLST types were identified. Further single nucleotide polymorphism (SNP) analysis showed a high genomic divergence between the C. coli isolates. High variability was also implicated for putative plasmid-located genes detected in 51% of the C. coli isolates. Distinct gene variants in clades II and III C. coli were identified by a k-mer analysis. After substracting k-mers in common with C. coli clade I database, 11 and 35 distinct genes were identified in clades II and III isolates, mainly involved in surface structures and modifications as well as signal transduction, suggesting niche adaptation of C. coli strains in wild birds. All strains were susceptible against (fluoro-)quinolones, erythromycin, tetracycline, gentamicin and only one isolate was resistant against streptomycin, suggesting that the sensitive phenotype was due to absence of selective pressure and niche separation in wild birds in Turkey. We conclude that Campylobacter spp. isolates from wildlife and environmental sources are still scarce in the databases and that there is a need for more studies on thermophilic Campylobacter spp. from different places all over the world in order to complement our understanding on dissemination and adaptation to distinct niches of this global food-borne pathogen.

17.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576332

ABSTRACT

Campylobacter jejuni has a large adaptive potential due to enormous genetic exchange. Factors regulating natural transformation in this food-borne pathogen are largely unknown but of interest for the application of sustained reduction strategies in the food-processing industry. Using a single cell DNA uptake assay, we visualized that recognition of methylated C. jejuni DNA was essential for the first step of DNA uptake into a DNase resistant state. Transformation rates using a resistance marker correlated with the fraction of competent bacteria, harboring one to maximally four locations of active DNA uptake, not necessarily being located at the cell pole. Competence developed with rising pH between 6.5 and 7.5 under microaerobic conditions and was nearly insensitive towards growth temperatures between 32 °C and 42 °C, CO2 concentrations ranging from 0 to 50% and growth rates. However, competence development was abolished at pH 5 or under aerobic stress conditions, in which the bacteria ceased growth but fully survived. The DNA uptake machinery in competent bacteria shut down at slightly acidic pH and was reversibly switched on upon neutralization. It was dependent on the proton motive force and, in contrast to competence development, slightly enhanced under aerobic conditions. The results suggest that natural transformation in C. jejuni occurs in the neutral and microaerobic intestinal environment for enhanced genetic diversity and pre-adaption before host switch. In addition, highly competent bacteria might be shed into the environment, still able to acquire genetic material for increased survival.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , DNA, Bacterial/metabolism , Bacterial Proteins/genetics , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , Transformation, Bacterial/genetics , Transformation, Bacterial/physiology
18.
Antibiotics (Basel) ; 10(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199987

ABSTRACT

We investigated trends in antimicrobial resistance (AMR) in Campylobacter jejuni and Campylobacter coli in poultry between 2010 and 2016 in Germany and their association with antimicrobial use. Campylobacter had been isolated from the caeca of broilers and turkeys at slaughter by regional laboratories according to current ISO methods in the framework of a national monitoring program. Isolates were submitted to the National Reference Laboratory for Campylobacter and tested for AMR using broth microdilution methods. Minimum inhibitory concentrations were evaluated according to epidemiological cut-off values. Antimicrobial use (AMU) data from 2014 to 2016 were taken from a government report. AMR was higher in C. coli than in C. jejuni and higher in turkeys than in broilers. AMR was highest to tetracycline and the tested (fluoro)quinolones while it was rare to gentamicin in both bacterial species, infrequent to erythromycin in C. jejuni, and moderate in C. coli. AMR to tetracycline and erythromycin decreased over time while it increased to (fluoro)quinolones. An association of AMU and AMR was observed for resistance to tetracycline and erythromycin, while it was not observed for the aminoglycosides. Resistance to nalidixic acid and ciprofloxacin increased despite a decrease of fluoroquinolone use between 2014 and 2016, indicating that other factors have a strong influence on resistance to (fluoro)quinolones in Campylobacter.

19.
Nucleic Acids Res ; 49(12): 6863-6879, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34139017

ABSTRACT

Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Helicobacter pylori/genetics , Oxidative Stress , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Cations, Divalent/metabolism , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/physiology , Gene Expression Regulation, Bacterial , Helicobacter pylori/metabolism , Models, Molecular , Oxidation-Reduction , Protein Binding , Protein Domains , Transcription, Genetic
20.
Zoonoses Public Health ; 68(6): 638-649, 2021 09.
Article in English | MEDLINE | ID: mdl-34041858

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial gastroenteritis globally, and infections are often transmitted through consumption of raw or undercooked poultry. Campylobacter jejuni ST50 is among the top ten sequence types (STs) reported in the collected isolates listed at PubMLST records from poultry, food and clinical sources for Asia, Europe, North America, Oceania and South America. This study was designed to determine the most commonly reported C. jejuni STs globally using the PubMLST database and assess similarities between genomes of C. jejuni ST50 isolates from geographically distinct locations. To gain a better understanding of C. jejuni diversity, we compared draft genome sequences of 182 ST50 isolates recovered from retail or caecal poultry samples in Oceania, Europe and North America that were collected over a period of 9 years (2010 to 2018). Overall, phylogenetic analysis revealed that isolates from geographically distinct locations tended to cluster based on the continent where the sample was collected. Among ST50 isolates from Europe and North America, we identified resistance determinants associated with phenotypic resistance to beta-lactams (EU: 55%; GB: 43.1%), tetracyclines (CA: 77.3%; EU: 37.5%; GB: 9.8%; US: 43.5%) and fluoroquinolones (EU: 60.0%; GB: 15.7%); no resistance determinants were identified in isolates from Australia. In general, the majority of the virulence genes, with rare exceptions such as wlaN, cj1138, hddA and rfbC, were evenly distributed throughout the genomes of all ST50 isolates in this study. Genomic-based characterization of C. jejuni ST50 isolates from poultry on three continents highlighted that geographically distinct isolates have evolved independently but only represent a glimpse into the diversity of C. jejuni.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter jejuni/genetics , Genomics/methods , Poultry Diseases/microbiology , Poultry/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Australia/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter jejuni/drug effects , Drug Resistance, Multiple, Bacterial , Europe/epidemiology , Genome, Bacterial , Likelihood Functions , North America/epidemiology , Phylogeny , Poultry Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...